If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t+t^2=45
We move all terms to the left:
t+t^2-(45)=0
a = 1; b = 1; c = -45;
Δ = b2-4ac
Δ = 12-4·1·(-45)
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{181}}{2*1}=\frac{-1-\sqrt{181}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{181}}{2*1}=\frac{-1+\sqrt{181}}{2} $
| 6x=4x9 | | 17-2x=51 | | 45=t*t^2 | | 5w(5w+4)=32 | | 8x-7=6x+25 | | 2-2x=-3x+6 | | 1/3(6g+2)=12 | | 2x-7=5+7 | | 30-6x=-2x | | 2x+4x=5+7 | | 4(x+1)=22 | | 5-3x=7+9x | | 2v^2-5v-8=0 | | 6/7=2t/5+1 | | 60=m-22 | | 9x5-21=37-6-7 | | 12x^2+6x-28=0 | | 5/6=4t/6+1 | | 30=a+23 | | 28.7+17.9=5.2+x | | (8x+3)*(x+5)= | | 2x-8(9-x)=3 | | 2x-3x+7x-9=113 | | 4(-2u-7)=12 | | 2x-3x+17x-9=113 | | 2+4(x-5)-3x=12 | | 2/3q+5=2/3 | | 30=a= | | X+x+x-13x8=111 | | 3(1-5x)+1=5x | | -4+12y+7=16+16y-37 | | -7(3x3+6=7 |